

The importance of explainability of statistical models in consulting projects

Full Stack Data Science

Predictive Analytics - Software - Operations

INWT = In Numbers We Trust.

We believe in advancing businesses and people through data.

Agenda

- Why explainability matters
- Our journey from statistics to ML
- SHAP: local and global explanations
- Explainability in customer projects
- Summary

3

ML: Is it all about predictive performance?

"Old world"

- Feature engineering (~60-80% of the time)
- Statistical models / manual model optimization

vs. "new world of ML"

- ML allows to optimize models automatically
- Notion to strongly focus on performance metrics (goodness of fit, ...)
- Example: <u>kaggle competitions</u> <u>kaggle</u>

Most people distrust black boxes

Reasons:

- Compliance: Accountability (EU AI Act)
- Risk aversion: automated processes can generate damage
- Desire to understand algorithms / curiosity
 - Valuable insides by understanding processes
 - Robustness: limitations of training data
 - Plausibility of learned patterns (correlation vs. causality)
 - Omitted variables
 - Trust/Arguments for discussions with stakeholders
 - O ...

Why explainability matters (1)

About the difference between a bold head and a ball...

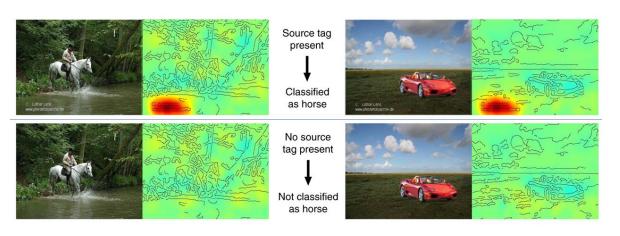
Video/Story from: <u>The Verge (2020): Al camera operator</u> repeatedly confuses bald head for soccer ball during live stream

[Video removed to decrease file size]

- Al operated camera should follow the ball in a soccer match
- Instead, the camera is switching around between ball and the referees bold head
- lack of proper training data; could have been detected easier with XAI techniques (see next slide)

Why explainability matters (2)

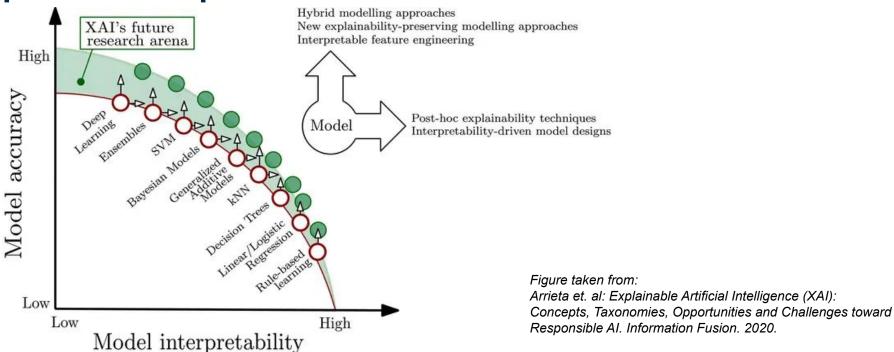
Horses and cars



Neural network
 classifies horses based
 on source tag on
 training images
 instead of recognizing
 shape of the horse

S. Lapuschkin et al.: Unmasking clever hans predictors and assessing what machines really learn. Nature communications, 10(1), 2019. https://www.nature.com/articles/s41467-019-08987-4

Tradeoff between interpretability and predictive power



Our journey at INWT from Statistics to ML

most popular generic method: GLM/GAM

ML to support feature engineering / to assist model development

XGBoost / CatBoost have become most popular

only after SHAP has been fully integrated

Model-agnostic XAI

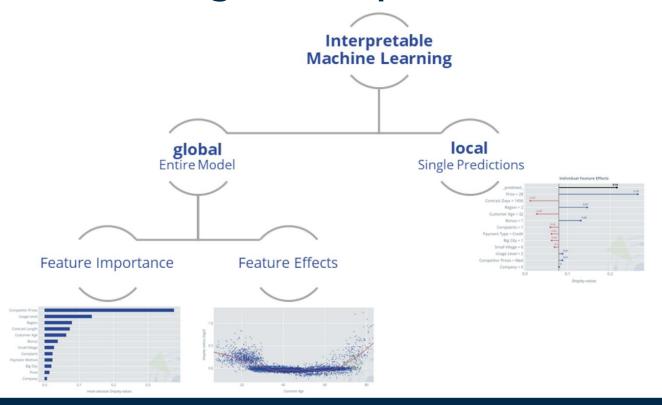
General idea:

- Gain understanding about black box model from its predictions
- Only requirement: predictive function $\hat{y} = f_{BB}(X)$
- Quantify changes in ŷ due to controlled changes in X

XAI with SHAP:

- SHapley Additive exPlanations
- The Shapley value is the average marginal contribution of a feature value across all possible coalitions

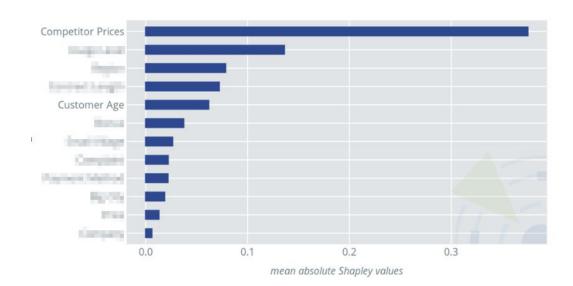
SHAP: local and global explanations



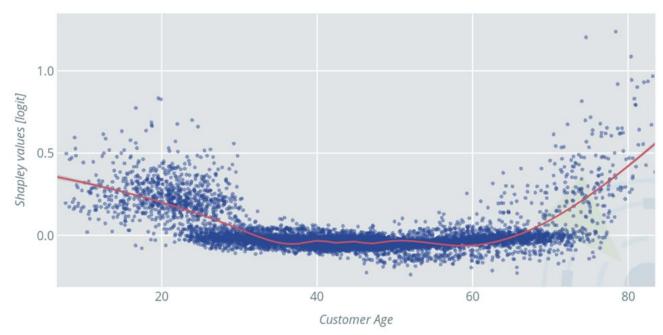
Setup:

- Task: Predicting customers probability to churn in contractual relationship
- Dependent variable: Churn within the next 12 months
- Requirements:
 - High predictive power to steer interaction with individual customer
 - Microscopic understanding of churn mechanism
- Data: >100T customers
- Model approach: XGBoost

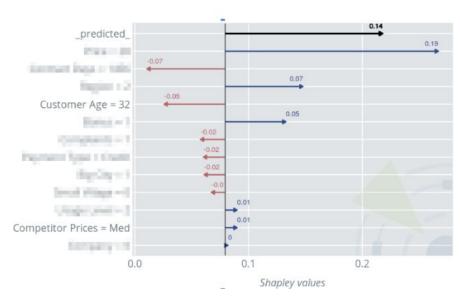
SHAP: Feature Importance



SHAP: Feature Effects



SHAP: Feature contribution on level of individual prediction



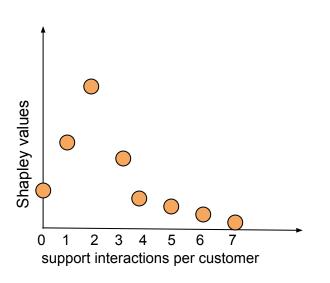
Use Case: Customer Lifetime Value

Setup:

- Task: Predicting (discounted) value of future returns from customer
- Dependent Variable: future returns from customer
- Model Approach: Survival analysis, additional models

Use Case: Customer Lifetime Value

Feature Effects: Insides by understanding processes



- Status quo: Customer support is generating costs,
 "bad" customers are keeping support busy
- Learning:
 - Product doesn't work out of the box
 - Many customers are having issues
 - Customers who believe it's worth solving the problem are reaching out to support
 - If support can solve the issues → customer becomes loyal
- New understanding: Customer support is key for generating loyal customers

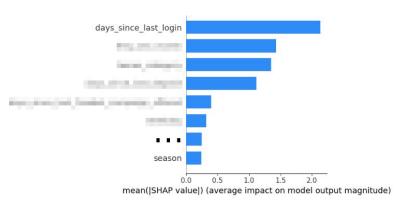
Use Case: Uplift Modelling for Marketing

Setup:

- Task: Predicting uplift of marketing incentive on customer activity
- Dependent variable: Customer activity (active: yes/no, no. of transactions) within next
 14 days
- Model approach: CatBoost

Use Case: Uplift Modelling for Marketing

Feature Importance: Identifying information leakage



- Model performance looks suspicious (AUC > 0.9)
- Possible issue: Information leakage
- First checks did not identify the issue
- Feature importance plot shows outstanding importance of single feature
- Issue: Instant customer reaction on marketing incentive
- Insufficient precision of date-time-variable used for cutting the data

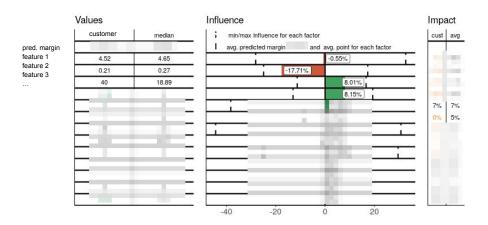
Use Case: Risk assessment

Setup:

- Task: Predicting the expected profitability of a customer
- Dependent variable: Expected (financial) margin of customers' transactions
- Model approach: Ensemble of various models (incl. mixed effects-model)

Use Case: Risk assessment

SHAP: Feature contribution on level of individual prediction

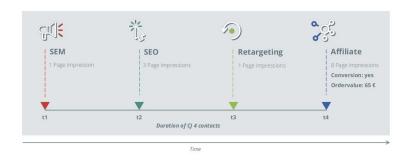


- Predictions integrated in automated processes
- Dashboard to look into single transactions and understand model decision

Use Case: Multi-channel attribution model

Setup:

- Customer: Multi-channel shop (online, mail-order with catalogue)
- Task: Predicting/measure contribution of different marketing channels on sales
- Dependent variable: time of conversion for given customer journey
- Model approach: Survival model



Use Case: Multi-channel attribution model

Arguments for discussions with stakeholders

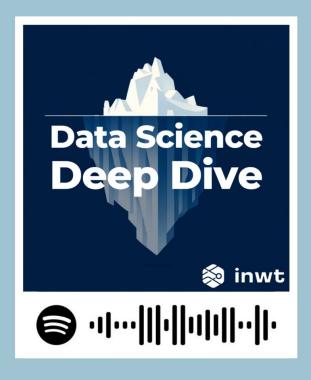
- Common to use heuristics/other backbox approaches in attribution modelling
- Relevance:
 - Marketing channels are handled by separate departments
 - Attribution results determine future budget of departments
 - Tension between catalogue and online units
 - Status quo: Attribute any sale (100% turnover) to catalogue, if catalogue has been sent to household within X weeks prior to order date
- Client communicated:
 - Explainability (both global and local) is a must-have
 - Units will disregard undesirable results unless sufficient trust can be established

Summary

- Explainability helps to prevent mistakes
 - Robustness, correlation vs. causality, information leakage
- Many clients demand explainability for various reasons
 - Curiosity, precondition to trust a model → best practice
- post-hoc XAI techniques make models exchangeable
 - Same interface for conceptually different models
- Integration of SHAP changed our model preference
 - Allows us to leverage advantages of some ML models
- Caveats:
 - Computational complexity
 - Choosing hyperparameters
 - SHAP not always appropriate
- Outlook:
 - Trustworthiness: Explainability + quantification of uncertainty

INWT Statistics GmbH +49 (0)30 1208231-0 www.inwt-statistics.de info@inwt-statistics.de





SHOW

Data Science Deep Dive

The Data Science Podcast by inwt