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• Prognosis research – aims and major challenges

• Pitfalls, and how to avoid them

• Some contributions

• Pathways to excellence



Purpose of models: To Explain or to Predict?

• Descriptive models

• Interest in describing the data structure parsimoniously.

• “Describe how outcome varies with predictors.“

• Predictive models

• Interest in predicting outcome for future application.

• “Predict how outcomes will be, given the predictors.”

• Explanatory models

• Interest in inferring causal effects of interventions on outcome.

• “Explain why outcomes differ depending on the intervention.”

• Similar considerations by Hernan et al, 2019; and Carlin and Moreno-Betancur, 2023

(Shmueli, 2010)
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Prognosis research
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• In their PROGRESS series, Hemingway et al (2013) defined prognosis research as

„… the investigation of the relations between future outcomes (endpoints) among 

people with a given baseline health state (startpoint) in order to improve health”

• They distinguish the four interrelated research themes:

• Fundamental (descriptive) prognosis research

• Prognostic factor research

• Prognostic model research

• Stratified medicine research



Fundamental prognosis research
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• According to Hemingway et al (2013), fundamental prognosis research refers to

describing outcomes and investigating variation in outcomes across different 

groups  compare Shmueli (2010)‘s notion of ‚descriptive models‘



Prognostic factor research
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• Phases of prognostic factor research

(Altman & Lyman, 1998):

• Phase I: exploratory studies (hypothesis generating)

• Phase II: exploratory studies that use a prognostic marker to

• Discriminate between patients at high or low risk

• Indicate which subsets likely benefit from therapy

• Phase III: confirmatory studies of a-priori hypotheses to proof which markers…

• Discriminate …

• Indicate …

• Develop a prognostic model combining many prognostic variables

• Maximize the ability to predict outcomes for groups or individuals



Prognostic model research
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• Key steps in model development:

• Literature research

• Systematic reviews using PROBAST (upcoming: PROBAST+AI) tool

• Identification of existing models with low risk of bias

• Review of prognostic factor studies

• Which prognostic factors have been used/not used?

• Validation of existing models

• Assessment of discrimination in target population

• Assessment of calibration (in-the-large, slope, local) in target population

• Updating of existing models (if necessary)

• Recalibration

• Reestimation

• Adding predictors, dropping predictors

• Development of a totally new model (if necessary)

Prognostic factor research



Systematic reviews
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• Most frequent problems:

• Participants: subjective eligibility criteria, posttransplant 
information, 

• Predictors: from the future,

• Outcome: arbitrary definitions, too short horizon

• Analysis: small sample size, mishandling of missing data, weak strategies for model building, 
inappropriate model performance evaluation

Risk of bias:



How to avoid pitfalls: consider PROBAST+AI
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• 2015: 2024:

• 2021:



PROBAST+AI signalling questions
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• Participants and data sources:

• Were appropriate data sources used?

• How was data collected? How were measurements done? Fairness?

• Was an appropriate study design used?

• Longitudinal cohort studies?

• Selective sampling (case-control) with appropiate adjustments (calibration)?

• Data quality?

• Did the in- and exclusions of study participants result in a representative data set?

• Representative for target application?

• No exclusion of ‚difficult‘ patients?

• Handling of marginalized subgroups?



PROBAST+AI signalling questions
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• Predictors domain:

• Were predictors defined in the same way for all participants?

• Was any pre-processing of predictors similar for all participants?

• Were predictor assessments made without knowledge of outcome data?

• Were the predictors included in the model available at the time the model was 

intended to be used?



PROBAST+AI signalling questions
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• Outcome domain:

• Were outcomes defined and assessed appropriately?

• Were outcomes defined and assessed in a similar way for all participants?

• Were outcome assessments made without use or knowledge of predictor data?

• Was the time interval between predictor assessment and outcome assessment 

appropriate?



PROBAST+AI signalling questions
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• Analysis domain:

• Was there evidence that the sample size was reasonable?

• Were continuous and categorical predictors handled appropriately?

• Were participants with missing or censored data handled appropriately in the 

analysis?

• If methods to address class imbalance were used, was the model or the model 

predictions recalibrated?

• Were methods used to address potential model overfitting?



PROBAST+AI signalling questions
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• Additional questions for performance evaluation:

• Was model evaluation based on only apparent performance avoided?

• Were participants with missing or censored data handled appropriately in the analysis? 

• If methods to address class imbalance were used, was the evaluation done in a dataset without 

imbalance correction? 

• If data splitting was done to create training and test datasets, was there evidence that data 

leakage was avoided?

• If resampling methods were used to evaluate model performance, were all model development 

steps replicated in the resampling process?

• Was the predictive performance of the model evaluated appropriately, 

e.g., calibration, discrimination, and net benefit?



Prognostic model research: new model development
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• Prognostic factor/model research: evidence available?

• Which predictors to consider?

• Data set(s) available?

• Sample size for development

• Multicenter collaboration: cross-validation?

• Quality of data? Prospectively collected/retrospective?

• Research protocol and Statistical Analysis Plan

• Participants – Predictors – Outcome - Analysis

• Data cleaning and data screening (IDA)

• Predictor specification

• Outcome specification

• Model specification and model selection

• Model diagnostics and model performance

• Describing the model



Reporting of prediction models: TRIPOD+AI
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Some of our own contributions
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• Initial data analysis (Heinze et al, 2024)

• Correlated predictors (Gregorich et al, 2021)

• Prespecification of predictors by background knowledge

(Hafermann et al, 2021, 2022)

• Data-driven selection (Heinze et al, 2018; Ullmann et al, 2024)

• Non-linear functional forms (Sauerbrei et al, 2020)

• Missing data imputation (Deforth et al, 2024)

• Regularization: to tune or not to tune (Sinkovec et al, 2021)

• Model explanation description (Wallisch et al, 2021)

• Putting research into context: Phases of methodological research (Heinze et al, 2024)



Initial data analysis
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• Provided a checklist of items to be addressed
at initial data analysis for prediction or
descriptive modeling task

• Main domains: missing data, univariate distributions, 
multivariate analyses (without outcome!)

• Golden rule of IDA :
„Do not assess predictor-outcome association!“ (similar to blinding in RCTs)



Follow-up project: SAPI
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• SAPI – statistical analysis plan with initial data analysis (IDA) plan

• Lead: Marianne Huebner, Carsten Oliver Schmidt, Lara Lusa, Georg Heinze, Willi 
Sauerbrei, Gary Collins

• Step 1: Write SAPI version 1 
Written without detailed knowledge of data, includes specification of IDA

• Step 2: Perform Initial data analysis according to SAPI v1, evaluate IDA results and:

• Step 3: Write SAPI version 2
Update/refine SAPI v1 because of IDA results

• Golden rule of IDA:
„Do not assess predictor-outcome association!“ (similar to blinding in RCTs)



Correlated predictors
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• 56 citations to date

2021

The symptoms:
• Highly variable regression coefficients
• Large standard errors
• Numerical instability



Predictor selection: where does all the background
knowledge come from?
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• „Background knowledge“ may

result from inappropriate

methods

• How relevant is background

knowledge

• Depending on sample size

• Depending on predictability



Variable selection
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• 956 citations to date 😊😊

• Protocol for a simulation study

Results were recently presented

at IBC, Atlanta



Results (1): main scenario, model size
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Results (2): main scenario, local prediction error
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𝑛𝑛
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

∑𝑖𝑖=1
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝛽̂𝛽 𝑖𝑖 − 𝑥𝑥𝑥𝑥

2
, 

with 𝑥𝑥 = observation vector 
in test set 

• Lasso: larger prediction errors towards the boundaries
• Starting from 𝑛𝑛 = 1600, BE_005 dominates the other methods.



Predictor selection - overall conclusions

Center for Medical Data Science - Section for Clinical Biometrics

Georg Heinze and Theresa Ullmann

25

• Performance of variable selection methods depends on sample size and 𝑅𝑅2:
worse performance for smaller sample sizes and lower 𝑅𝑅2

• No ‘one-size-fits-all’ method: 

ranking of methods depends on performance measure

• Do not use univariable selection, neither on its own nor in combination with backward 

elimination

• A ‘true’ data generating mechanism is hardly ever identified 

(exception: large sample size and high 𝑅𝑅2)

 We should not ‘believe’ in a model that was found by variable selection

 The selected model is just an ‘example model’ out of many 



Continuous predictors
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• How to include continuous predictors? 



Procedures for simultaneous variable and functional form 
selection (1)
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• MFP (Multivariable fractional polynomials) is an algorithm that combines variable 

selection with functional form selection.

• It uses stepwise (backward/forward) selection and at each steps reevaluates 

functional form selection.

• Parameters:

• Selection criterion (AIC/BIC/significance level)

• Significance level for functional form selection

• Complexity of FP (1, 2, 3, …)

• Variables ‘safe’ to be included (no matter which p-value)

• Described in Royston and Sauerbrei, 2008

• Implementation: R package mfp2 (available on CRAN)



Procedures for simultaneous variable and functional form 
selection (2)
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• Although in principle possible, there is no widely accepted other algorithm for 

simultaneous VS&FF selection

• MFP principle can be used with splines: multivariable regression splines (MVRS) 

procedure (Royston and Sauerbrei, 2007)

• rms package: fit restricted cubic splines for continuous variables (default: 4df)

• Remove only ‘very insignificant’ variables (Harrell, 2015)



Example: CRASH-2
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https://biostat.org/data

Training:    N=15,000

Validation: N=4,127

Predictors:
• Age
• Sex
• Glasgow coma scale (1-15)
• Systolic blood pressure
• Heart rate
• Respiratory rate
• Capillary refill time
• Type of injury (3 types)
• Time since injury



Example: CRASH-2
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MFP RMS

Selection criterion: AIC Selection criterion: p>0.5

Complexity: max. 4 DF (FP2) Complexity: RCS with 4DF

mfp2::mfp2() rms::lrm()



CRASH-2: (Selected) modeling results
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MFP

RMS



CRASH-2: Results of validation
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MFP

RMS

MFP

RMS

Measure Value

AUROC 0.8191

Brier 0.0971

ICI 0.0112

Measure Value

AUROC 0.8235

Brier 0.0973

ICI 0.0123



Missing data imputation
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• Investigated three different imputation methods in model development

• Nonlinear associations between variables and nonlinear functional forms in 

outcome model (resembling real long-Covid study)
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Missing data imputation: results
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• Overall, among the imputation methods

• missForest was slightly superior for AUROC

• aregImpute performed best in terms of calibration

• Surprisingly, calibration of models after aregImpute

were superior even to full data analysis (before

amputing data)

• This could be explained by the combination of:

• Correctly specified imputation models (nonlinearities!) 

 lead to unbiased imputations

• Only random noise in the imputations

 amputation/imputation acts just like shrinkage factor

• The shrinkage improves the calibration slopes



Talking about shrinkage: To tune or not to tune?
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• We investigated logistic ridge regression with tuned and fixed penalty

• Tuned penalty: different methods

• Fixed penalty according to width of prior interval for regression coefficients

(„weak“, „strong“)



Results: to tune or not to tune?
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• The tuned and optimal penalty

strength were negatively correlated:

• Need strong penalty but tuned penalty

is weak

• Need weak penalty but tuned penalty

is strong 

•  The costs of tuning hyperparameters

is often neglected, but can be significant!

T
u
n
ed

Optimal



Model description
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• „Model explanation“ (description): How do predictions vary with the values of a predictor?

• We compared partial dependence plots and individual conditional expectation (ICE) plots obtained

• In cardiovascular risk prediction

• In a large development data set (1M), validation set = 500k, event rate = 1%, ~20 predictors

• Comparing
Logistic regression (linear-additive), RMS strategy with splines and pre-specified penalties for higher
terms, Multilayer Neural Network, XGBoost



Results
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Stratified medicine research
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• Hemingway et al (2013): ‚The use of prognostic information to tailor treatment

decisions to an individual or a group of individuals with similar characteristics‘

• Example:

• Target trial emulation: each trial compared transplanted to those still-on-waiting list



Survival benefit example
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Pathways to excellence (1)
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• Clearly distinguish between descriptive, predictive and causal research questions:

• Carlin and Moreno-Betancur (2023): 

‚… it should be emphasised that most areas of

health and medicine advance by examining

questions of all three types.‘

‚Unfortunately, this fundamental taxonomy of research

questions has barely penetrated the teaching and practice

of biostatistics, especially with respect to regression models.‘

• Fundamental (descriptive) prognosis research …                descriptive   
• Prognostic factor research …                                             predictive
• Prognostic model research …                                             predictive
• Stratified medicine research …                       causal



Pathways to excellence (2)
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• Descriptive research is about summarizing outcomes in a population or about

quantifying differences in outcomes between different subjects

• Predictive research is about (improving) accuracy of predictions

• Causal research is about effects of alternative interventions within the same 

subjects

• This excludes research questions like ‚effect of sex‘, ‚effect of age‘, …!



Pathways to excellence (3)

Center for Medical Data Science – Institute of Clinical Biometrics

Georg Heinze

44

• In all domains, estimates are preferred over tests

• ‚We would like to quantify the difference‘ > ‚We would like to infer if there is a difference‘

• (Ir)relevance of null hypotheses in descriptive research?

• (Ir)relevance of p-values and confidence intervals in multivariable models?

• Quantify the uncertainty, but with no cut offs



Pathways to excellence (4)

Center for Medical Data Science – Institute of Clinical Biometrics

Georg Heinze

45

• The tedious homework of statisticians:

• Prespecification of analysis plans: SAPI

• Conducting analysis in reproducible way: same data, same code, same results!

• Transparent reporting of what was done

 EQUATOR network

https://www.equator-network.org/
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